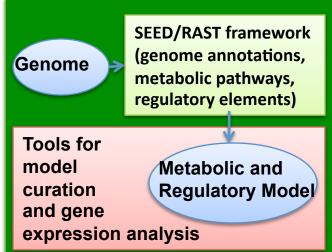


Christopher H. Chang Sr. Scientist, Computational Science NREL

Current Area of Research Interest

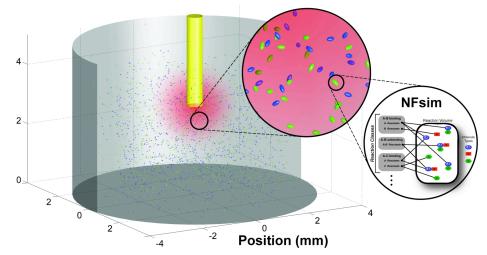

Systems Biochemistry

- Exploration, analysis, and visualization of abstract multidimensional spaces
- Metabolic graphs—algorithms and analyses
- Stochastic methods—agent-based modeling combined with kinetics
- Semantic technologies (Knowledgebase, AI) for model provenance and content

Matt DeJongh Associate Professor, Computer Science Hope College, Holland, Michigan

Current Area of Research Interest

- -> In the context of the SEED environment for comparative genome annotation:
- Tools for creation and refinement of genome-scale metabolic models for prokaryotes
- Tools for identification of regulatory elements and integration with metabolic models
- Use of integrated models for gene expression data analysis

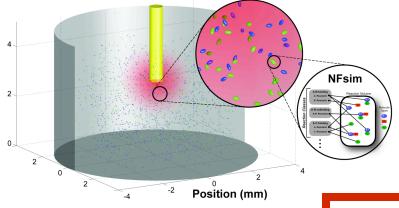

Challenges that May be Addressed with Advanced Computing and Mathematics Capabilities

- prediction of phenotype from genotype: biomass composition, transport capabilities, relationship of energy production pathways to environmental signals
- prediction of new metabolic and regulatory mechanisms
- exploration of the space of possible metabolisms

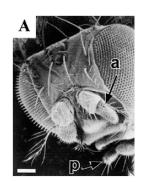
Opportunities in Biology at the Extreme Scale of Computing

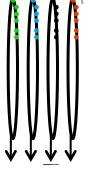
August 17-19, 2009

Thierry Emonet
Assistant Professor
Yale University


Current Area of Research Interest

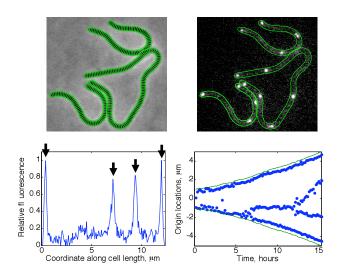
- Digital assays and multiscale agent-based modeling to connect molecular mechanisms to cell behavior
- Dynamical encoding of odors by the fly
- The role of phenotypic variability in bacterial sensing
- The dynamical role of spatial localization in signal processing


Challenges for Advanced Computing and Mathematics

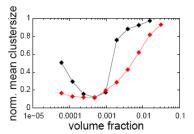

- Predicting cellular behavior from individuals to populations
- Accelerated stochastic agent-based simulation algorithms
- Automated dynamical model construction and parameter sensitivity analysis.

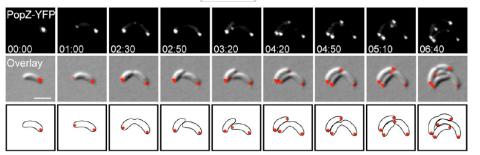
The role of individuality in clonal populations

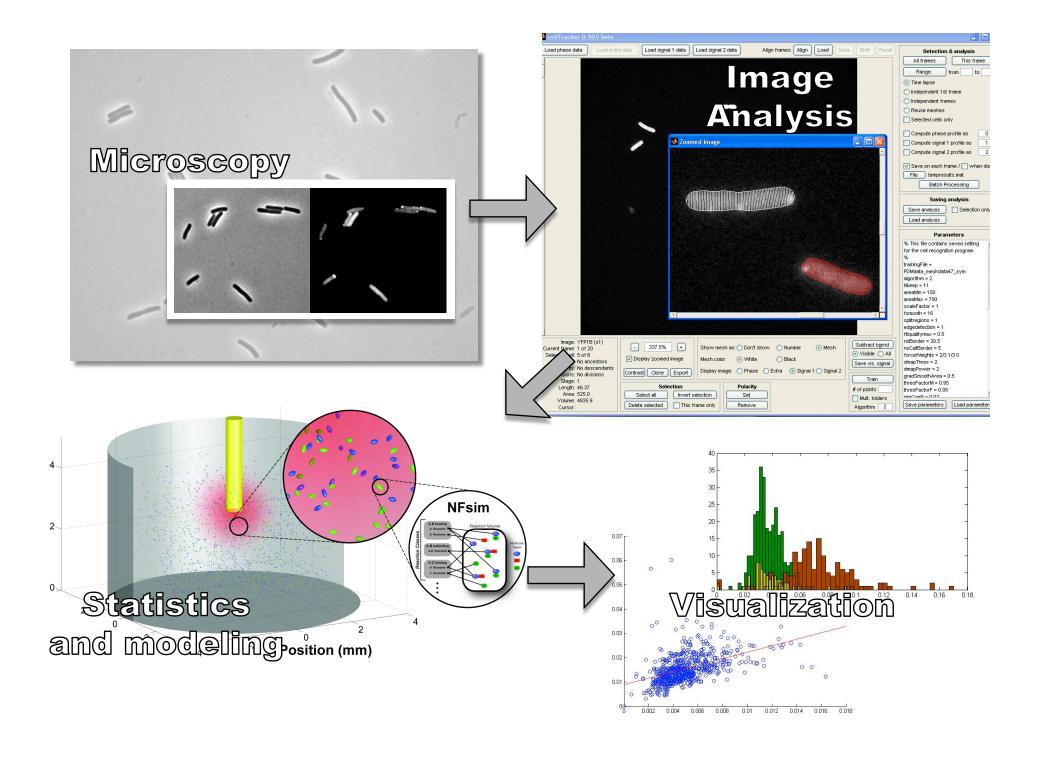
Temporal aspect of the odor code in *Drosophila*



We study how live cells process information and make decisions using experiments, theory and modeling.


Stochastic dynamics of chromosome replication




Self-aggregation mechanism for polar localization in bacteria

lab members

Roger Alexander Postdoc KBT 1054 (203) 432-3518 roger.alexander@yale.edu

Nicholas Frankel Graduate Student in Rotation KBT 1050 (203) 432-3517 nicholas.frankel@yale.edu

William Pontius Graduate Student KBT 1050 (203) 432-3517 william.pontius@yale.edu

Adam Bildersee Undergraduate Student KBT 1050 (203) 432-3517 adam.bildersee@yale.edu

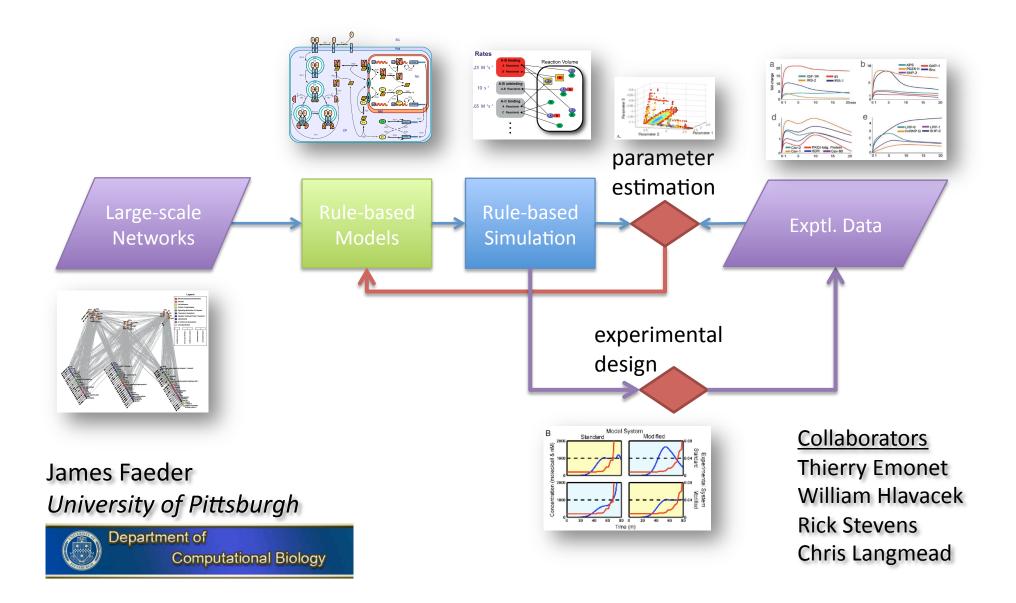
Garrit Jentsch Postdoc KBT 1054 (203) 432-3518 garrit.jentsch@yale.edu

Oleksii Sliusarenko Postdoc KBT 1050 (203) 432-3517 oleksii.sliusarenko@yale.edu

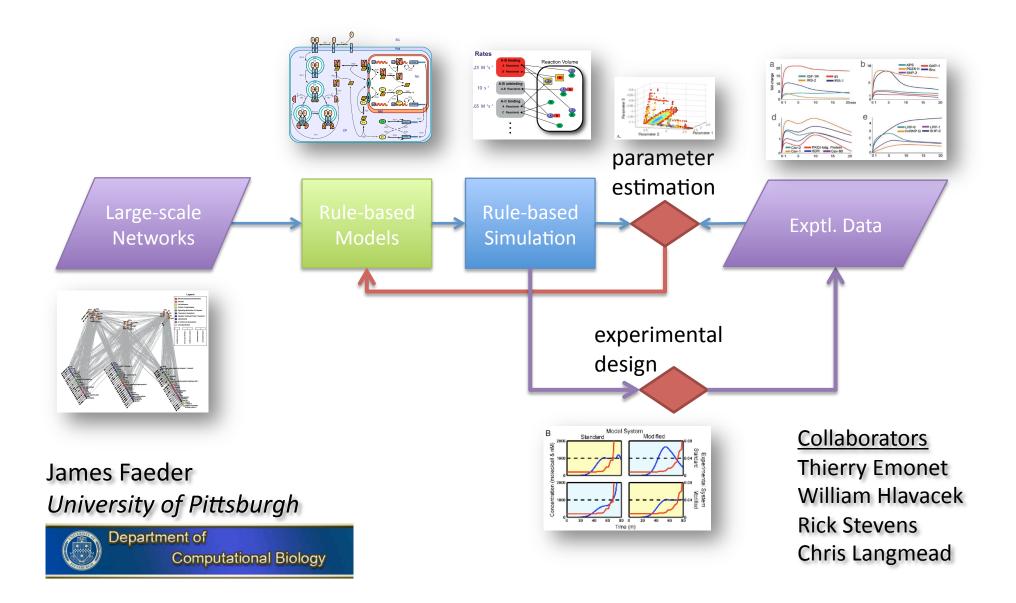
Thierry Emonet
Principal Investigator
KBT 1048
(203) 432-3516
thierry.emonet@yale.edu

Carlotta Martelli Graduate Student KBT 1054 (203) 432-3518 carlotta.martelli@yale.edu

Michael Sneddon Graduate Student KBT 1050 (203) 432-3517 michael.sneddon@yale.edu


Collaborators

John Carlson, Yale Philippe Cluzel and Heungwon Park, Harvard James Faeder, University of Pittsburgh Christine Jacobs-Wagner, Yale Rick Stevens, Argonne National Laboratory

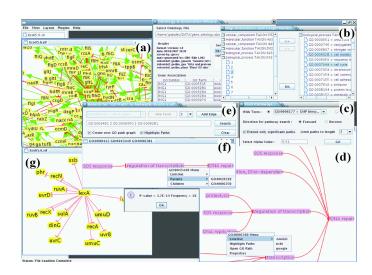

Funding

Alfred P. Sloan Foundation NSF National Academies Keck Futures Initiative

Large-Scale Simulation of Cell Signaling Networks with Robust Parameter Estimation and Experimental Design

Large-Scale Simulation of Cell Signaling Networks with Robust Parameter Estimation and Experimental Design

Pathways, Cells, and Organelles

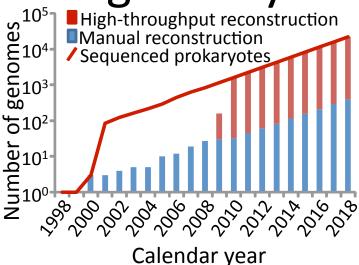


Name: Ananth Grama

Title: Professor of Computer

Science

Employer/Affiliation: Purdue


Current Area of Research Interest

- Parallel Computing
- Computational Biology/Bioinformatics
- Computational Engineering and Sciences

- High throughput network inference and modeling
- Spatiotemporal up- and down-scaling of networks
- Integration of individuals genotype (SNPs, etc.), phenotypic, and interaction data

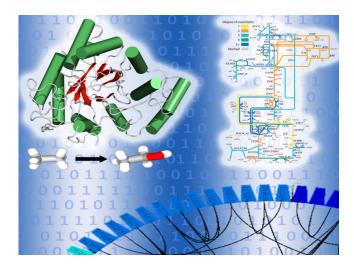
Christopher Henry
Assistant Scientist
Mathematics and Computer Science
Argonne National Laboratory

Current Area of Research Interest

- High-throughput reconstruction, optimization and analysis of genome-scale models
- •Model facilitated development of a minimal strain of B. subtilis
- •Stochastic multi-scale modeling of cellular communities

- Optimization of annotations and model stoichiometry to fit experimental data
- Optimization of regulatory network structures to fit microarray, ChIP-on-chip, and other growth phenotype data
- Scanning parameter values for dynamic models of metabolism to identify the parameter ranges that replicate observed cell behavior

Opportunities in Extreme Computing


for Biology

Name: Costas D. Maranas

Title: Professor

Employer/Affiliation: PSU

Current Areas of Research Interest

- Reconstruction, Analysis and Curation of Metabolic Networks
- Computationally guided strain design for biofuel production
- De novo protein and enzyme design

- Solve larger NP-hard problems arising in metabolic network optimization
- Automatically reconstruct, test and correct genome-scale reconstructions
- Elucidate metabolic flows in genome-scale metabolic models
- Reconstruct metabolism and interdependencies of entire microbial consortia
- Enable the use of more detailed energy descriptions in protein design

Jennifer Reed University of Wisconsin-Madison Chemical & Biological Engineering, GLBRC

1654536105106450849

Research Interests

- Microbial metabolic & regulatory model development
 - E. coli
 - Cyanobacteria
 - Shewanella oneidensis
- Applications of Modeling to:
 - Metabolic Engineering
 - Biological Discovery (eg. regulation, functional genomics)
 - Evolution (conserved network properties)
 - Microbial Interactions

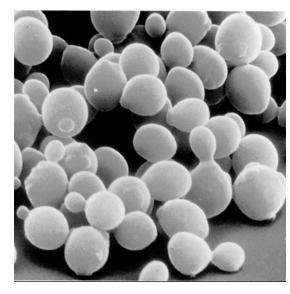
Challenges:

- Mapping genome information to biological networks:
 - Transporters
 - Regulatory Networks
 - Automation
- Large-scale models
 - Data integration
 - Large systems of non-linear equations
 - Parameter estimation
 - Isotopomer Models
- Interactions
 - Organism-Organism
 - Organism-Natural Environment

Pathways, Cells and Organelles

Ines Thiele
Assistant Professor
Center for Systems Biology
University of Iceland

Current Area of Research Interest


- Integrated models of multiple cellular functions $\frac{1}{5}$ 0.6
- Multi-cellular & community models
- Characterization of disease states in human metabolism

- Large-scale modeling (integrated and multicellular models) will require high performing computing and algorithmic developments.
- Key reason is that the stoichiometric matrices are ill-scaled, having entries and variables distributed over many orders of magnitude.
- Advances of optimization solvers will be necessary for speed, efficiency, and accuracy of computations.

John J. Tyson Univ Distinguished Prof Virginia Tech

Current Areas of Research Interest

- Network Dynamics and Cell Physiology
- Deterministic and Stochastic Modeling, Hybrid Models
- Regulation of Cell Growth, Division and Death
- Differentiation of T cells and Macrophages

- Software tools for modeling modularity of regulatory networks
- Parameter estimation from experimental data
- Bifurcation analysis of large nonlinear dynamical systems
- Bifurcations in stochastic dynamical systems